以文本方式查看主题 - 国际泵阀采购论坛-泵水泵油泵螺杆泵液下泵离心泵阀阀门采购阀门销售泵阀论坛 (http://www.pvwww.com/pvbbs/index.asp) -- 泵技术论坛 (http://www.pvwww.com/pvbbs/list.asp?boardid=4) ---- 二次泵系统的设计及控制方法探讨 (http://www.pvwww.com/pvbbs/dispbbs.asp?boardid=4&id=1563) |
-- 作者:化工泵 -- 发布时间:2007/4/3 11:33:45 -- 二次泵系统的设计及控制方法探讨 二次泵系统的设计及控制方法探讨 关键词:二次泵系统 桥管 定压差控制 负荷分布 1、引言 近年来,随着中央空调的大量使用,我国建筑能耗增长迅速。据统计,1990~2000十年间建筑能耗年均增长5.8%,大大超过同期能源生产2.4%的增长率。在空调能耗中,系统输送能耗约占1/3[1]。因此,变流量技术在空调系统节能设计日益受到重视。 对于空调水系统来说,输送能耗占总能耗的比例随系统规模的增大而增加。变水量系统(VWV)通过改变输送管网内的冷水流量满足用户负荷要求,可有效降低系统输送能耗。 2、二次泵系统的设计 如上所述,用户负荷的变化可以通过改变系统冷水流量实现。但是,为保证水力热力工况稳定,冷水机组所允许的流量波动范围很小。解决这一矛盾,通常有两种方法。 图1为国内设计中较多采用的压差旁通控制方法。当负荷减小时,用户阀门关小,分集水器压差增加,电动调节阀开大,部分冷水经旁通短路,维持机组流量不变,用户负荷增加时动作相反。 三次泵系统用户可根据各自需要配置相应的循环水泵,并通过调节水泵转速来匹配负荷要求,桥管的设置有效地避免了用户间调节工况的干扰。在理想工况下,一次泵、二次泵的扬程之和与一次泵系统水泵扬程相等。因此,三次泵系统的水泵能耗不会高于一次泵系统。 3、二次泵系统的负荷调节 二次泵系统是一个变水量系统,通过改变循环水量实现对用户的负荷调节。常见的变水量调节方法有台数调节和变速调节两种。 3.1 台数调节 传统一次泵系统的台数调节较多采用差压控制,二次泵系统的台数调节主要采用流量控制,在控制精度较高的场合多采用负荷控制。 差压控制是利用水泵并联特性曲线,设定一个供回水压力的波动范围,当负荷变化引起管网流量改变时,供回水压力也随之波动,当超过设定上限值时增泵;当低于设定下限值时减泵。 流量控制是根据桥管内水流的方向和大小控制水泵及相对应冷机的开停。当用户负荷下降,二次流量减少时,一次流量过剩,桥管内冷水由供水流向回水。当流量大于单泵流量110%时,关闭一台冷机及相应水泵;当用户负荷增加,一次流量出现不足,桥管内冷水逆向流动。当流量大于单泵流量20%时,开启一台水泵及相应的冷机。提前开启冷机的目的是为避免二次供水温度出现较大波动。 根据相似定律,相似工况点处水泵功率与其转速的三次方成正比。在忽略静扬程时,系统曲线上的点为相似工况点,满足相似定律。在变速变水量系统中,水泵变速调节常采用恒压差控制,控制曲线与系统曲线不重合。因此,水泵功率与转速也不满足三次方定律。 水泵变速调节恒定压差控制时各曲线间的关系。水泵扬程由恒定压差和可变压差两部分组成:恒定压差即压差传感器控制回路,由盘管、平衡阀和控制阀组成,其值不随流量变化改变;可变压差为输配管网压降,与管网流量平方成正比。由管网曲线向上平移一个恒定压差即得控制曲线。由图可以看出,恒定压差越小,系统的节能效果就越好。 计算系统在不同负荷分布不同控制方式下所需的水泵扬程。为简化分析,计算中假设用户设计负荷相等,且用流量代替用户负荷变化。 不同负荷分布不同控制方式下水泵所需的扬程(单位:kPa) 表1 用户6处定压差 ① 系统近端定压差时,水泵扬程需求仅取决于负荷大小而与负荷分布无关;远端定压差时,水泵扬程需求不仅与负荷大小有关,还与负荷分布有关。 ② 除用户全开或全关两种工况外,远端定压差时系统扬程需求较近端时小,系统运行较为节能。这是因为远端定压差时,系统具有最大的可变扬程。 ③ 系统远端定压差时,用户负荷集中于近端时系统扬程需求较比例负荷时小,负荷集中于远端时系统扬程需求较比例负荷时大。这是因为远端负荷需要的输送能耗大。 结论 在空调变水量系统设计中,国内常采用分集水器压差旁通控制的一次泵系统,国外常采用带桥管的二次泵系统。本文对二次泵系统形式、负荷调节及压差控制策略进行了探讨,得出以下结论: 二次泵系统通过设置桥管,不仅有效地解决了冷机定流量负荷变流量的矛盾,而且实现了系统各部分水力工况隔离,同时具有分布式水泵水力稳定性好的特点; 当供冷系统容量较大且负荷变化范围较宽时,采用多泵并联变速运行可有效降低运行能耗,在低负荷时系统仍能保持较高的效率。 水泵调速采用远端恒定压差控制时,系统具有最大的可变扬程,运行能耗较近端压差控制要小。远端压差控制的扬程需求不仅与负荷大小有关,还与负荷分布有关。 参考文献 [1] 陆耀庆 实用供热空调设计手册 北京:中国建筑工业出版社 1993.6. [2] Luther K. Variable Volume Pumping Fundamentals HPAC August 1998. [3] Luther K. Applying variable volume pumping HPAC October 1998. [4]Weinstein Taylor and Associates The PST System Hydronic circuitry for high efficiency. http://www.wtaeng.com [5] 江亿 用变速泵和变速风机代替调节用风阀水阀 暖通空调 1997 27(2) [6] 秦绪忠 江亿 供热空调水系统的稳定性分析 暖通空调 1998 28(3) [7] ASHRAE. 1995. 1995 ASHRAE handbook –HVAC applications, Chap.34 Testing, Adjusting and Balancing. Atlanta: American Society of Heating, Refrigerating and Air~Conditioning Engineering, Inc. [8] Hegberg, R. A. 1997. Selecting control and balancing valves in variable flow system. ASHRAE Journal. June, pp53~62 [9] Petijean, R.T. 1992. Total balancing. Tour & Anderson. [10] 施俊良 调节阀的选择 北京:中国建筑工业出版社 1986.12 作者简介 李建兴,男,1972年生,汉族,山西原平人,天津大学讲师,工学博士,参与编写著作一部,已发表论文十余篇,现从事建筑环境与设备工程专业教学与科研工作。通讯地址:天津市南开区卫津路92号 天津大学 环境科学与工程学院 300072 电话: 022~87892934 电子信箱: Ljx918@eyou.com |